
Enhancing OSS Remediation with Patch
Backporting

Lyuye Zhang
College of Computing and Data Science

Nanyang Technological University, Singapore
zh0004ye@e.ntu.edu.sg

Abstract—Nowadays existing vulnerability remediation meth-
ods mainly rely on version upgrades which often struggle to
eliminate all vulnerabilities in complex scenarios. Therefore, this
paper proposes a patch-porting-based tool aiming to automate the
porting of patches to vulnerable versions, achieving remediation
beyond traditional upgrading. The experiment indicates that 85%
of the vulnerabilities successfully generated patches for 20 CVEs,
and 70% passed validation, demonstrating that PPR can serve
as a supplement to existing vulnerability remediation tools.

Index Terms—Software Security

I. INTRODUCTION

With the widespread adoption of open-source software, the
issue of latent security vulnerabilities has garnered increasing
attention. To ensure the security of third-party libraries (TPLs),
Software Composition Analysis (SCA) is widely employed to
identify TPLs and related security vulnerabilities to mitigate
security risks. Academic tools like Coral [1], [2], Steady [3],
OSSFP [4], [5] and Sembid [6], along with industrial tools
such as Snyk [7], Dependabot [8], and OSV Fix [9] adjust
dependency trees in software projects to remediate vulnerabil-
ities.

However, relying solely on adjusting software dependency
configurations often fails to eliminate vulnerabilities com-
pletely. This is primarily due to the continuous disclosure
of new vulnerabilities at the latest versions and constrained
ranges of version selection. These challenges highlight the
need for a more comprehensive and unified remediation ap-
proach beyond upgrading. To address this, we propose an
enhanced solution using patch porting to remediate remaining
vulnerabilities. Our approach, PPR (Patch Porting for Reme-
diation), builds on an existing tool by identifying unfixed
vulnerabilities and porting patches to affected TPLs, facing
challenges: (1) Versions with vulnerabilities may differ from
patches, requiring the precise location of vulnerable code. (2)
Many patches involve multi-spot diffs across various files and
functions, demanding syntactic and semantic coherence across
these locations.

To address these issues, a patch porting tool leveraging large
language models (LLMs) aided by coherent semantic analysis
is proposed to enhance existing remediation strategies. PPR
employs an adaptive strategy by determining the scenarios
where the patches must be adapted.

II. METHODOLOGY

Recent research by Yang et al. [10] systematically catego-
rizes patch porting scenarios into four:

To handle the scenarios, an adaptive mechanism to first
automatically identify the specific scenario, and then apply
a corresponding remediation strategy. For Scenario 1, Git
Apply [11] is used directly. For Scenario 2, only the porting
location is required to be identified. Since Scenarios 3 and 4
both require extensive code adaptation and semantic under-
standing, we utilize an LLM (GPT-4 [12]) to handle the code
adaptation for both.
• Hunk Preprocessing: Sometimes, multiple hunks in a patch

need to work together, such as when a new variable is
introduced from another file or library, requiring an import
statement at the file’s beginning. To identify related hunks,
Program Dependence Graph (PDG) is used to analyze the
relationships among hunks. Given the lack of specialized
tools for analyzing Java source code, we selected Antlr [13]
as the foundational tool to build PDG based on the Abstract
Syntax Tree derived. If connected by PDG, these hunks
likely need to be ported together to maintain semantic
consistency. Since these connections can be transitive, all
directly or indirectly connected hunks should be clustered
together, with different clusters ported in parallel.

• Locating the Hunk Porting Position: To accurately locate
where to port the patch, PPR follows these steps: First,
PPR models the pre-patch code by constructing a PDG,
especially focusing on code segments before the hunk. The
PDG captures control flow and data flow to represent the
code’s semantics. Using graph isomorphism algorithms to
identify positions with similar semantics to the pre-patch
code, these structurally similar code segments are candidate
locations for the patch port.

• Patch Generation: After determining the porting location,
PPR utilizes an LLM to generate the patch code. PPR pro-



TABLE I: PPR Backportin Results

#CVE #Generated #Successful %Generated %Successful

20 17 14 85% 70%

vides LLM with the confirmed patch location and relevant
hunk details, instructing it to create a patch for the new
version of the code that maintains semantic accuracy and
matches the style of the new codebase.

• Patch Validation: Patched code often relies on definitions in
other files or modules, such as classes and global variables.
PPR analyzes these dependencies in the patched code to
ensure they remain available or adapts to new dependency
structures as needed.

III. EVALUATION

As shown in Table I, our experiment involved a total of
20 CVEs, with a successful patch generation rate of 85%
and a successful manual verification rate of 70%. The reasons
behind failures were analyzed: ① Program Analysis Accuracy
Issues: The analysis is limited to one file, with interprocedural
analysis confined to functions involved in the patch, omitting
dependencies on other related functions. ② Porting Location
Selection Issues: the erroreous porting location caused by mul-
tiple similar locations led to failed backporting. This analysis
indicates that improving interprocedural analysis capabilities
and enhancing context information acquisition could help
increase patch generation accuracy.

IV. RELATED WORK

Recent advancements in patch porting include TSB-
PORT [10], PPatHF [14], and FixMorph [15].Both TSBPORT
and FixMorph utilize program analysis to identify target loca-
tions for patch application. PPatHF employs a fine-tuned LLM
to generate ported code. However, these approaches rely on
code similarity to locate segments for porting, rather than delv-
ing into code semantics. There exists other studies [16], [17],
[18] leveraging LLM for vulnerability fixing and analysis. Due
to different scenarios and target programming languages, these
tools were not included in the evaluation.

V. CONCLUSION

This paper presents PPR, a patch porting tool based on
LLM, which effectively addresses open-source vulnerabilities
that cannot be remediated by version adjustment tools. Exper-
imental results has demonstrated its feasibility and effective-
ness. Future work will focus on enhancing its inter-procedural
analysis capabilities.

REFERENCES

[1] L. Zhang, C. Liu, Z. Xu, S. Chen, L. Fan, L. Zhao, J. Wu, and Y. Liu,
“Compatible remediation on vulnerabilities from third-party libraries for
java projects,” in Proceedings of the 45th International Conference on
Software Engineering, ser. ICSE ’23. IEEE Press, 2023, p. 2540–2552.
[Online]. Available: https://doi.org/10.1109/ICSE48619.2023.00212

[2] L. Zhang, C. Liu, S. Chen, Z. Xu, L. Fan, L. Zhao, Y. Zhang,
and Y. Liu, “Mitigating persistence of open-source vulnerabilities in
maven ecosystem,” in 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2023, pp. 191–203.

[3] “Eclipse Steady,” https://projects.eclipse.org/proposals/eclipse-steady,
2023.

[4] J. Wu, Z. Xu, W. Tang, L. Zhang, Y. Wu, C. Liu, K. Sun, L. Zhao, and
Y. Liu, “Ossfp: Precise and scalable c/c++ third-party library detection
using fingerprinting functions,” in 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). IEEE, 2023, pp. 270–282.

[5] L. Zhao, S. Chen, Z. Xu, C. Liu, L. Zhang, J. Wu, J. Sun, and Y. Liu,
“Software composition analysis for vulnerability detection: An empirical
study on Java projects,” in Proceedings of the 2023 31th acm sigsoft
international symposium on foundations of software engineering, 2023.

[6] L. Zhang, C. Liu, Z. Xu, S. Chen, L. Fan, B. Chen, and Y. Liu,
“Has my release disobeyed semantic versioning? static detection based
on semantic differencing,” in Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’22. New York, NY, USA: Association for Computing Machinery, 2023,
pp. 1–12. [Online]. Available: https://doi.org/10.1145/3551349.3556956

[7] “Snyk,” https://snyk.io/, 2023.
[8] “Dependabot,” https://docs.github.com/en/code-

security/dependabot/dependabot-security-updates/about-dependabot-
security-updates, 2023.

[9] “Osv-scanner fix,” https://google.github.io/osv-
scanner/experimental/guided-remediation/, 2024.

[10] S. Yang, Y. Xiao, Z. Xu, C. Sun, C. Ji, and Y. Zhang, “Enhancing oss
patch backporting with semantics,” in Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, 2023,
pp. 2366–2380.

[11] “Git Apply,” https://git-scm.com/docs/git-apply , 2024.
[12] OpenAI, “Chatgpt,” https://openai.com, 2021, gPT-4 model.
[13] “Antlr,” https://www.antlr.org/ , 2024.
[14] S. Pan, Y. Wang, Z. Liu, X. Hu, X. Xia, and S. Li, “Automating zero-

shot patch porting for hard forks,” in Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2024, pp. 363–375.

[15] R. Shariffdeen, X. Gao, G. J. Duck, S. H. Tan, J. Lawall, and A. Roy-
choudhury, “Automated patch backporting in linux (experience paper),”
in Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2021, pp. 633–645.

[16] Y. Sun, D. Wu, Y. Xue, H. Liu, W. Ma, L. Zhang, Y. Liu, and Y. Li,
“Llm4vuln: A unified evaluation framework for decoupling and enhanc-
ing llms’ vulnerability reasoning,” arXiv preprint arXiv:2401.16185,
2024.

[17] L. Zhang, K. Li, K. Sun, D. Wu, Y. Liu, H. Tian, and Y. Liu, “Acfix:
Guiding llms with mined common rbac practices for context-aware
repair of access control vulnerabilities in smart contracts,” arXiv preprint
arXiv:2403.06838, 2024.

[18] J. Hu, L. Zhang, C. Liu, S. Yang, S. Huang, and Y. Liu, “Empirical anal-
ysis of vulnerabilities life cycle in golang ecosystem,” in Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering,
2024, pp. 1–13.


